

Peace Region Grass Seed Testing Program

Coordinated by:

Peace Region Forage Seed Association Agriculture and Agri-Food Canada Beaverlodge, Alberta

Annual Report 2016

Compiled by: Nityananda Khanal, Abdl Rahman Azooz and Talon Gauthier

Table of Contents

ACKNOWLEDGMENTS	IV
PRGST CO-OPERATING RESEARCH SITES AND CONTACTS	V
PROTOCOL FOR PEACE REGION GRASS SEED TESTING PROGRAM (PRGST)	VI
INTRODUCTION	1
MATERIALS AND METHODS	1
RESULTS	
RESULTS WEATHER AND ITS EFFECTS ON CROPS RESULTS OF COMPLETED TRIALS	3
WEATHER AND ITS EFFECTS ON CROPS RESULTS OF COMPLETED TRIALS CREEPING RED FESCUE	3 4 4
WEATHER AND ITS EFFECTS ON CROPS	
WEATHER AND ITS EFFECTS ON CROPS Results of completed trials Creeping red fescue Meadow fescue Timothy	3 4 4 8 11
WEATHER AND ITS EFFECTS ON CROPS	3 4 4
WEATHER AND ITS EFFECTS ON CROPS Results of completed trials Creeping red fescue Meadow fescue Timothy	3 4 4

List of Figures

Figure 1.	Average monthly maximum temperature during the growing seasons of 2013 to 2016 compared with 30- years' monthly average at Beaverlodge, AB.	3
Figure 2.	Average monthly minimum temperature during the growing seasons of 2013 to 2016 compared with 30- years' monthly average at Beaverlodge, AB.	3
Figure 3.	Total monthly rainfall during the growing seasons of 2013 to 2016 compared with 30-yearrs' monthly average at Beaverlodge, AB.	4
Figure 4.	Photograph taken in 2016 of the creeping red fescue trial established in 2014 at Beaverlodge, AB	4
Figure 5.	Seed yield of creeping red fescue cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB.	5
Figure 6.	Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) in 2015 and 2016 of creeping red fescue established in 2014 at Beaverlodge, AB	
Figure 7.	Seed yield of meadow fescue cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB.	9
Figure 8.	Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) in 2014, 2015 and 2016 of the meadow fescues established in 2013 at Beaverlodge, AB	
Figure 9.	Seed yield of Timothy cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB1	
Figure 10	. Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of Timothy in 2015 and 2016 from the cultivar trial established in 2013 at Beaverlodge, AB	6
Figure 11	. Photograph taken in 2016 of the creeping red fescue trial established in 2015 at Beaverlodge, AB1	5
Figure 12	. Photograph taken in 2016 of the Timothy trial established in 2014 at Beaverlodge, AB1	6

List of Figures

Table 1.	List of cultivar trials that completed the required evaluation of perennial growth cycles in 20162
Table 2.	List of cultivar trials that ongoing for their required evaluation of perennial growth cycles2
Table 3.	Seed yield of creeping red fescue cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB
Table 4.	Plant height and aerial dry matter yield at maturity of creeping red fescue cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB
Table 5.	Seed yield of meadow fescue cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB
Table 6.	Plant height and aerial dry matter yield at maturity of meadow fescue cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB
Table 7.	Seed yield of Timothy in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB11
Table 8.	Plant height and aerial dry matter yield at maturity of Timothy cultivars in 2014, 2015 and 2016 in the trial established in 2013 at Beaverlodge, AB
Table 9.	Seed yield of creeping red fescue cultivars in 2016 from the trial established in 2015 at Beaverlodge, AB
Table 10.	Seed yield of Timothy cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB15
Table 11.	Plant height and aerial dry matter yield at maturity of timothy cultivars in 2015 from the trial established in 2014 at Beaverlodge, AB

Acknowledgments

We wish to acknowledge the following companies and agencies for providing elite lines/cultivar entries and sponsorship of the Peace Region Grass Seed Testing trials.

Barenbrug Deutsche Saatveredelung AG Foster's Seed and Feed LTD Imperial Seed Moore Seed Processors PureSeed Limoges Forage Grasses Seed

The following groups and agencies are also thanked for cooperating with the program and managing the research sites:

Peace Region Forage Seed Association

Agriculture and Agri-Food Canada

Alberta Agriculture and Rural Development

We thank the following for their partnership and technical assistance:

Calvin Yoder, Alberta Agriculture

Shirley Neighbour, Agriculture and Agri-Food Canada

PRGST Research Contacts and Sites

Talon Gauthier	Peace Region Outreach
PRFSA General Manager	
Community Futures Peace Liard	
904 102nd Ave	
Dawson Creek, BC	
V1G 2B7	
Phone: 1 877 630 2198	
Email: coordinator@peaceforageseed.bc.ca	
Nityananda Khanal, Ph.D., P.Ag.	Beaverlodge Research Farm
Research Scientist – Integrated Forage Crops	Agriculture and Agri-Food Canada
Management	righteattaite and right food Canada
Beaverlodge Research Farm	
Agriculture and Agri-Food Canada	
P.O. Box 29, 1 Research Road	
Beaverlodge, AB T0H 0C0	
Telephone 780-354-5111	
Email: Nityananda.Khanal@AGR.GC.CA	
Rahman Azooz	Beaverlodge Research Farm
Seed Production Program	Agriculture and Agri-Food Canada
Agriculture and Agri-Food Canada	
Box 29, Beaverlodge, AB. T0H 0C0	
Phone (780) 354-5114	
Cell (780) 832-5947	
Fax (780) 354-5150	
Email : azoozr@agr.gc.ca	
Pat Gansevles.	Beaverlodge Research Farm
Forage Seed Technician	Agriculture and Agri-Food Canada
Agriculture and AgriFood Canada	
Box 29, Beaverlodge, AB. T0H 0C0	
Phone (780) 354-5121	
Fax (780) 354-5150	
Email : <u>Gansevlesp@agr.gc.ca</u>	
1	

Protocol for Peace Region Grass Seed Testing Program (PRGST)

Revised December 2016

1. Research Sponsorship

The research sponsorship of **\$240 CAN/entry/year/location** is requested on an annual basis, as years of production will vary with the species being tested, and applies to the establishment year as well. The Peace Region Forage Seed Association will administer funds for the Peace Region Grass Seed Testing Program. The PRFSA General Manager will invoice each seed company annually.

2. Eligibility of Entries

Released and experimental lines of all tame and native grass species will be considered if they are of interest to commercial seed companies. We reserve the right not to initiate tests:

- if seed arrives late
- if there is lack of space in any year at a particular location
- if there are too few entries in any year for a particular location
- if the germination % of the forage crop seed less than 75%

3. Seed Requirements and Deadline for Seed Entry

The applicant will provide for EACH TEST LOCATION:

- 50 gm of bentgrass, Kentucky bluegrass or timothy
- 100 gm of orchardgrass; creeping red, chewings, hard, meadow, sheep or tall fescue; annual or perennial ryegrass
- 200 gm of meadow or smooth bromegrass, wheatgrasses

-The germination % of each cultivar

Approved seed entries shall supply seed by **April 1st** of the establishment year and **will include the percent** germination and relative maturity (early, medium or late) of each cultivar. Please indicate whether the submission is a forage or turf type.

Please ship approved seed to*: Peace Region Forage Seed Association 904 102 Ave Dawson Creek, BC V1G 2B7

*European companies submitting entries need to ship their seed to their US or Canadian head office then to the PRFSA. Seed shipped from the US to Canada needs to be accompanied by all phytosanitation paperwork to clear customs.

4. Publication of Results

Data will undergo appropriate statistical analysis and each applicant will be provided with an annual report. Information on cultivars will be made available in various annual reports and to seed producers upon request. Results will be posted by the end of the fiscal year on the research page of the website www.peaceforageseed.ca

All reasonable care will be taken to ensure a successful test; however, a guarantee cannot be made that a particular test will be successful. If required a test will be reseeded.

Some results in this report have been tested for one or two harvested years. It is advised not to use average yield figures to make cultivar comparisons for these years. Only after a minimum of two harvested years of creeping red fescue or three harvested years of timothy, meadow fescue, tall fescue, meadow bromegrass and smooth bromegrass as a recommended year for the test, the data should be considered as 90% reliable. In some cases, data may not be reported due to extreme variations that cannot be accounted for in the statistical design.

Disclaimer

Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement is implied.

5. Use of Seed

Seed submitted will only be used to establish the agreed upon trials. The seed will **NOT** be used for increase, selection or distribution.

Peace Region Grass Seed Testing (PRGST) Program

2017 Application for Entry

1. Company:	Telephone:
Contact person:	Fax:
Mailing address:	_ Email:

Species	Type Forage o	or turf	Cultivar name/code	% Germ	Relative maturity early, medium, late

Send application form no later than March 15th, 2017 to:

Nityananda Khanal, Ph.D., P.Ag.

Research Scientist – Integrated Forage Crops Management Beaverlodge Research Farm | Ferme de recherche de Beaverlodge Agriculture and Agri-Food Canada | Agriculture et Agroalimentaire Canada P.O. Box 29 | C.P. 29, 1 Research Road Beaverlodge, AB T0H 0C0 Telephone | Téléphone 780-354-5111 Email: <u>Nityananda.Khanal@AGR.GC.CA</u>

INTRODUCTION

The Peace Region offers tremendous potential to increase the production, productivity and quality of forages and turf grass seed for the domestic and export market. Lack of regionally adapted cultivars and appropriate management options such as registered plant protection materials are major constraints to quality seed production in the region. There are growing concerns for weed competition and insect pest infestations in the forages and other crops in the recent years. In order to address the production constraints and foster the forage seed industry in this internationally reputed region, the Beaverlodge Research Farm of AAFC has been extending collaboration with the Peace River Forage Seed Association (PRFSA) through an initiative known as the Peace Region Forage Seed Testing (PGRST) (originally known as Western Grass Seed Testing Program) and with projects under Agri-Innovation Program for last several years. The primary objective of the PRGST trials is to evaluate the adaptability, productivity and quality of the proprietary species and cultivars of U.S. and European companies for contract seed production in western Canada.

This report presents the results of various forage and turf grass cultivars that were evaluated for seed yield for three perennial growth seasons, except for the creeping red fescue which was evaluated for two perennial growth seasons, in the Peace Region Grass Seed Testing Trials (PRGST) under the Agri-Science Projects Growing Forward 2 Program from 2013 to 2016. A total of 73 entries of different forage and turf grass species from various origins were evaluated in this period. The number of entries included 18 of timothy (*Phleum pratense* L.), 46 of creeping red fescue (*Festuca rubra* L. var. rubra), 3 of meadow fescue (*Festuca pratensis* Huds.), 8 of tall fescue (*Festuca arundinacea*) and 8 of crested wheatgrass (*Agropyron cristatum* [L.] Gaertn.). Most of those cultivars were developed outside of Canada and hence must be tested under Canadian conditions for seed yield and adaptability. The seed yield results of the cultivars under the PRGST trials are helpful to establish contacts between seed companies and growers. Assessment of regional adaptability of the cultivars of foreign origin under appropriate agronomic practices such as stand establishment, integrated pest management, plant nutrient management, harvest and post-harvest procedures provide valuable information in terms of consistency, quality and marketability and thereby providing confidence to both producers and seed companies for contractual decisions. Ultimately, the cultivars that perform well undergo seed multiplication and the seeds are destined to domestic and international markets.

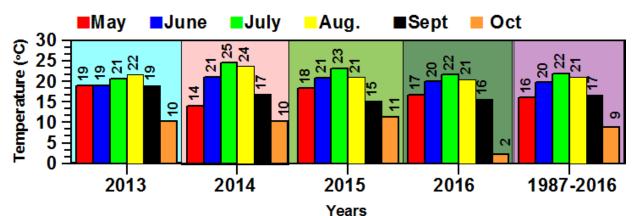
MATERIALS AND METHODS

The Peace Region Grass Seed Testing (PRGST) trials were conducted at Beaverlodge Research Farm, AB (lat. 55°12'N) from 2013 to 2016. The results included in this report were derived from trials that were established in 2013, 2014 and 2015. The new cultivars of timothy (*Phleum pratense* L.), creeping red fescue (*Festuca rubra* L. var. *rubra*), meadow fescue (*Festuca pratensis* Huds.) and tall fescue (*Festuca arundinacea*) and crested wheatgrass (*Agropyron cristatum* [L.] Gaertn.) were tested for their agronomic performance and seed production potential in comparison to popular cultivar of respective species in the region (Table 1 and 2). The cultivars in the trials were evaluated according to their agronomic performance that required two harvested years of seed production for fine fescue and three harvested years of seed production of tall fescue, meadow fescue, timothy, crested wheatgrass and bromegrass. The forage grass cultivars and the checks included in the trials were obtained from Canadian and international seed companies and their foreign associates. Several seed companies Moore Seed Processors, Imperial Seed, Foster's Seed and Feed LTD and Pure Seed) participated in the Peace Region Grass Seed Testing Program (PRGST). The site at Beaverlodge, AB had been under pea-barley-wheat-canola rotation before seeding. The trials are direct seeded and fertilizers are applied in the fall according to results from the soil testing laboratory. During the trials, weeds were controlled by a combination of trimming, inter-row cultivation, and application of recommended herbicides. Individual experimental plots were comprised of four rows, each 6 m long with row spacing of 30 cm apart. The yield was collected

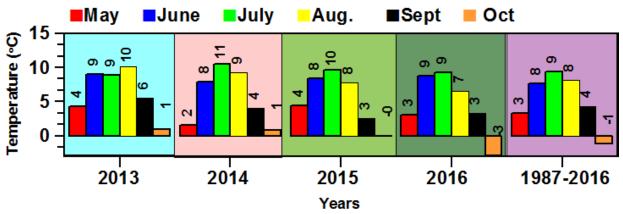
from the central two rows. The experimental design for each species was a randomized complete block with four replications.

Forage species	Year of seeding	Seed sources	No. of Entries	Cultivars	Year of evaluation
Timothy	2013	Barenbrug USA	6	BAR BOO5, BAR D003, BAR 1006, BAR M002, BAR R001, BAR S004	2014, 2015 & 2016
		Moore Seed Processors	3	Teuho, Tuukka, Varis	
		Local check	1	Climax	
Creeping Red Fescue	2014	Moore Seed Processors	8	MSB0313, MSK0213, MSP0613, MSP0713, MSP0813, MSP0913, MSR0413, MSU0113	2015 & 2016
		Foster's Seed	3	B130421, B130428, B130429	
		Local check	1	Boreal	_
Meadow Fescue	2013	Barenbrug USA	9	FP75RO, COSMONAUT, BOR 20613, BOR 20614, 11-FPF12, 11-(09-FPF7), PRADEL, FP75RO1, BARCRYPTO	2014, 2015 & 2016
		Local check	1	Preval	_
Tall	2013	Barenbrug USA	2	BAR FA 9125, BAR FA 9017	Failed to
Fescue		Local check	1	Courtenay	mature

Table 1. List of cultivar trials that completed the required evaluation of perennial growth cycles in 2016


Table 2. List of cultivar trials that ongoing for their required evaluation of perennial growth cycles

Forage species	Year of seeding	Seed sources	No. of Entries	Cultivars	Year of evaluation
Timothy	2014	Moore Seed Processors	MST0513	2015 &	
		Barenbrug USA	8	PHL1R99, Bor 01033, Bor 2005, Bor 01025, Bor 88060, Bor 01037, Barpenta, Barfleo	- 2016
Creeping 2015 Red Fescue		Imperial Seed	4	Reverent, DSV 15-01, DSV 15-02, DSV 15- 03,	2016
		PureSeed	7	4SHR, 4BEN, 4RUE-14, 4SP14, 4ED4, 4DR4, 4GRY	-
		Moore Seed Processors	8	MSPO114, MSPO214, MSPO314, MSPO414, MSPO514, MSPO614, MSG0412, MSR0612	-
		Barenbrug USA	2	Bridgeport II, BAR VV-VP3-CT	-
		Foster's Seed	2	4CRD-8, ASC295	-
Creeping	2016	Barenbrug USA	1	BAR FRR 15134	-
Red Fescue		Foster's Seed	3	C8-14-4ED4, Chanellor Chewings, C8-14- 4BEN,	-
		Imperial Seed	3	DSV 15-01, DSV 15-02, DSV 15-03	-
Meadow Fescue	2016	Barenbrug USA	2	BAR FP 32, Prade	-
Tall Fescue	2016	Barenbrug USA	4	BAR FA 11701, Bariane, BAR FA 14173-11, BAR FA 14173-15	-
Crested	2016	Limoges Forage Grasses	4	Kirk, AC New Kirk, Fairway, Elbee	-
Wheat- grass		Barenbrug USA	1	BAR GRL CWG	-


RESULTS

Weather and its effects on crops

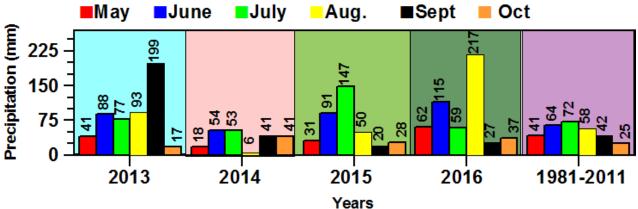
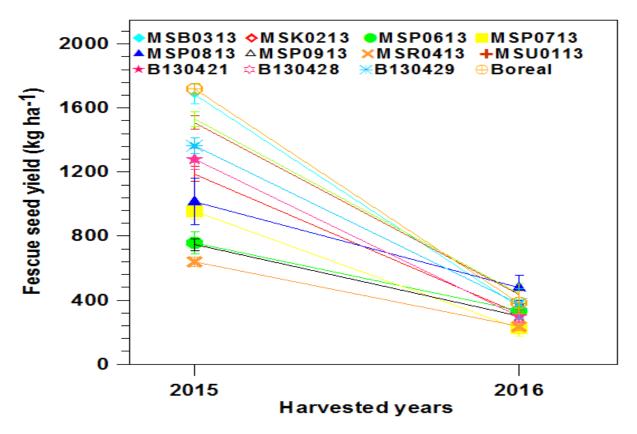

While the monthly mean temperatures displayed similar patterns with long-term average for last 30 years (Figure 1 & 2), the amount and distribution of precipitation showed noticeable monthly variation in growing seasons over the reporting period of 2013 to 2016 (Figure 3). In general, the growing season in 2013, 2015 and 2016 received higher amount of precipitation, with seasonally wettest months being September, July and August respectively. On the other hand, 2014 growing season remained much drier than the long-term average of 30 years (Figure 3). This condition results in variation in soils moisture regimes in growing season in different years and hence flections in productivity. Negligible precipitation in August of 2014, when most of the species undergo reproductive processes, could have negative effect on seed development. The 2015 growing season showed typical modal pattern of monthly precipitation (Figure 3) favouring the moisture demand of the plants. The precipitation pattern in 2016 was also favourable, except for a high terminal rainfall in August of 2016 (Figure 3) that caused some lodging and some impairment in the harvesting process. In general, both 2015 and 2016 seasons were favourable for plant growth, biomass and seed yield of grass species evaluated in the trials. The data for seed yield for tall fescue trial at Beaverlodge were not reported due to delayed maturity of the new tall fescue cultivars included in 2015 and 2016.

Figure 1. Average monthly maximum temperature during the growing seasons of 2013 to 2016 compared with 30years' monthly average at Beaverlodge, AB.

Figure 2. Average monthly minimum temperature during the growing seasons of 2013 to 2016 compared with 30years' monthly average at Beaverlodge, AB.

Figure 3. Total monthly rainfall during the growing seasons of 2013 to 2016 compared with 30-yearrs' monthly average at Beaverlodge, AB.


Results of completed trials

Creeping red fescue

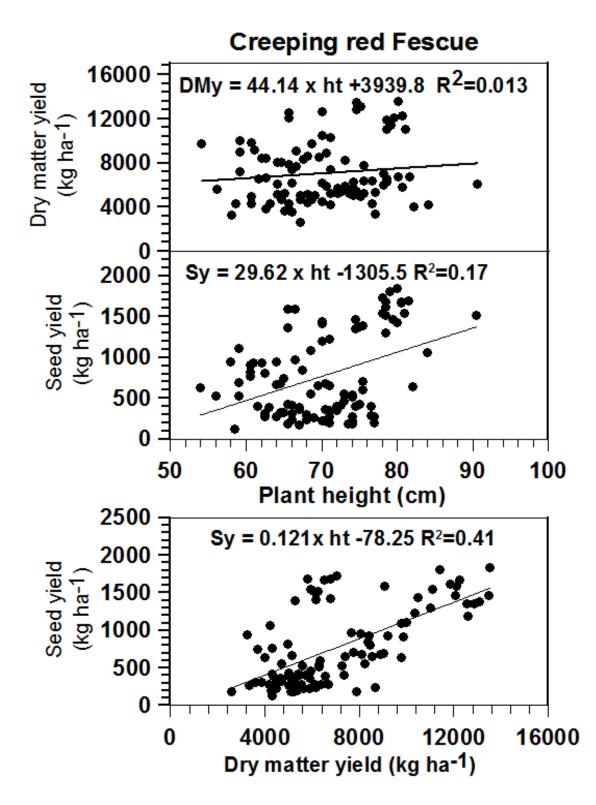
The 12 cultivars of creeping red fescue established in 2014 exhibited differences in seed yield, aerial dry biomass and plant height. Figure 4 shows a pre-harvest snapshot of the trial in 2016. The seed yield varied as much as three-fold between the cultivars within the same harvest season. All cultivars showed 53% to 79% decline in yield in the successive harvest season from 2015 to 2016 (Table 3; Figure 5). Average yield ranged from 639 to1721 kg ha⁻¹ (571 to 1537 lbs acre⁻¹) in the first harvest season of 2015, and the total seed yield over two harvest seasons of 2015 and 2016 ranged from 876 to 2105 kg ha⁻¹ (782 to 1880 lbs acre⁻¹). The check cultivar Boreal out-yielded all new entries in total yield (Table 3), although the seed yield ranks were not consistent for most of the cultivars in two successive growing seasons (Figure 5). Two cultivars MSB0313 and MSU0113 from Moore Seed Processors and one cultivar B130421 from Foster's Seed had relatively consistent performance with 97%, 92% and 94% of the cumulative yield of the check cultivar Boreal (Table 4).

Figure 4. Photograph taken in 2016 of the creeping red fescue trial established in 2014 at Beaverlodge, AB.

Figure 5. Seed yield of creeping red fescue cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB.

Table 3. Seed yield of creeping red fescue cultivars in 2015 and 2016 from the trial established in	2014 at
Beaverlodge, AB.	

0	0.16	Seed yield (kg ha ⁻¹)			Seed yie	eld (lb a	IC ⁻¹)	Seed yield % of check			
Company	Cultivar	2015	2016	Total	2015	2016	Total	2015	2016	Total	
	MSB0313	1687	359	2045	1505	320	1825	98	93	97	
	MSK0213	1188	321	1509	1060	286	1346	72	83	72	
	MSP0613	756	332	1088	675	296	971	46	86	52	
Moore	MSP0713	953	227	1180	850	203	1053	58	59	56	
Seed Processors	MSP0813	1016	475	1491	907	424	1330	64	123	71	
100633013	MSP0913	747	297	1044	667	265	931	45	77	50	
	MSR0413	639	236	876	570	211	782	39	61	42	
	MSU0113	1509	436	1945	1346	389	1735	92	113	92	
Feeterle	B130421	1530	440	1970	1365	393	1758	93	114	94	
Foster's	B130428	1282	301	1583	1144	269	1412	78	78	75	
Seed	B130429	1364	378	1742	1217	337	1554	83	98	83	
Check	Boreal	1721	385	2105	1535	343	1878	100	100	100	
CV%		8	22	8							
LSD 0.05		195	158	266							


Seeding date was 13 May 2014 and harvesting dates were 15 July in 2015 and 29 July in 2016.

Average plant heights of creeping red fescue cultivars ranged from 62 to 82 cm with most of the cultivars showing lower values in the successive harvest season (Table 4). Akin to the seed yield trend, all cultivars had 22% to 54% lower aerial dry biomass in the second successive harvest season (Table 4). Seed yield was found to be moderately correlated with aerial dry biomass ($R^2 = 0.41$) and plant height ($R^2 = 0.17$) (Figure 6).

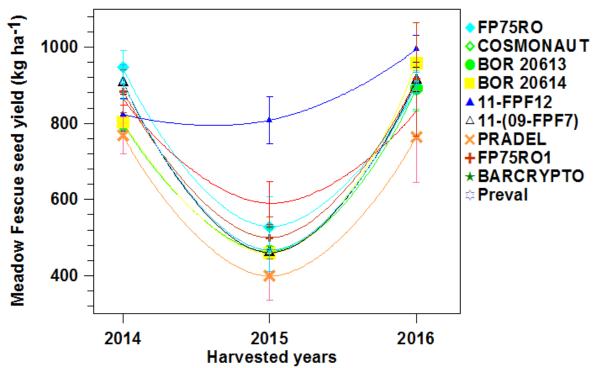
Compony	Cultivar	Plant he	ight (cm)	Dry matter yield (kg ha-1)				
Company	Cultivar	2015	2016	2015	2016	Total		
	MSB0313	80	71	9481	5440	14921		
	MSK0213	67	69	9319	5512	14831		
	MSP0613	61	64	7626	5849	13475		
Moore Seed Processors	MSP0713	70	65	7360	4426	11786		
Moore Seeu Processors	MSP0813	62	64	6964	5462	12426		
	MSP0913	65	64	7604	5259	12863		
	MSR0413	75	76	7135	5076	12211		
	MSU0113	82	74	9187	5814	15001		
	B130421	71	71	8098	5255	13353		
Foster's Seed	B130428	72	68	11602	5324	16926		
	B130429	73	70	10698	5906	16604		
Check	Boreal	80	71	9119	5414	14533		
CV%		5	6	24	17	17		
LSD 0.05		8	9	4202	1920	4900		

Table 4. Plant height and aerial dry matter yield at maturity of creeping red fescue cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB.

Seeding date was 13 May 2014 and harvesting dates were 15 July in 2015 and 29 July in 2016.

Figure 6. Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) in 2015 and 2016 of creeping red fescue established in 2014 at Beaverlodge, AB.

Meadow fescue


A meadow fescue trial established in 2013 included nine new cultivars originated from Barenbrug, USA and a check cultivar Preval (Table 5). Unlike in creeping red fescue, the yield variation in a season in meadow fescue cultivars was much lower and seed yield showed characteristic parabolic pattern in that seed yield plummeted in the second harvest year and then bounced back in the third year to the level of the first harvest year's yield (Figure 7). The yield variation was most pronounced in the second harvest year, that is 2015, which ranged from 399 to 808 kg ha⁻¹ (356 to 722 lbs acre⁻¹). Cultivar 11-FPF12 showed most consistent yield trend over three consecutive harvest years resulting in about 15% cumulative yield advantage for three harvest seasons over the check cultivar. On the other hand, cultivar Pradel yielded consistently the lowest yielder. Rest of the cultivars exhibited inconsistent yield ranking over the three successive harvest years from 2014 to 2016 (Table 5, Figure 7). All new cultivars of meadow fescue matured earlier than the creeping red fescue.

Compony	Cultivor		Seed yield (kg ha ⁻¹)		Seed yield (lb ac ⁻¹)				% of Check				
Company	Cultival	2014	2015	2016	Total	2014	2015	2016	Total	2014	2015	2016	Total
	FP75RO	946	529	888	2362	844	472	792	2107	104	113	98	104
	COSMONAUT	865	590	832	2287	772	526	742	2040	95	126	92	100
	BOR 20613	799	464	893	2155	713	414	797	1923	88	99	99	94
_	BOR 20614	804	459	958	2221	717	410	855	1982	88	98	106	97
Barenbrug USA	11-FPF12	823	808	995	2626	734	721	888	2343	91	173	110	115
00/1	11-(09-FPF7)	908	461	915	2283	810	411	816	2037	100	99	101	100
	PRADEL	768	399	765	1932	685	356	683	1724	84	85	84	85
	FP75RO1	884	500	916	2299	789	446	817	2051	97	107	101	101
	BARCRYPTO	834	516	834	2184	744	460	744	1949	92	111	92	96
Check	Preval	909	467	906	2282	811	417	808	2036	100	100	100	100
CV%		8	8	16	8								
LSD 0.05		148	82	306	370								

Table 5. Seed yield of meadow fescue cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB.

Seeding date was 15 May 2013 and harvesting dates were 17 July 2014, 13 July 2015 and 26 July 2016.

Meadow fescues have much taller growth form than the creeping red fescue. Average plant heights of meadow fescue cultivars ranged from 94 to 124 cm with all the cultivars showing taller growth in 2016 harvest season than the 2015 season (Table 6). Similarly, the aerial dry biomass showed an increasing trend in the successive growing seasons with about 3-fold increase in aerial dry matter yield from 2015 to 2016 harvest season (Table 6). These results implicate that meadow fescues respond well to the growing season rainfall for its growth strategy. The plant heights showed strong correlations with seed yield ($R^2 = 0.54$) and dry matter yield ($R^2 = 0.66$) (Figure 8).

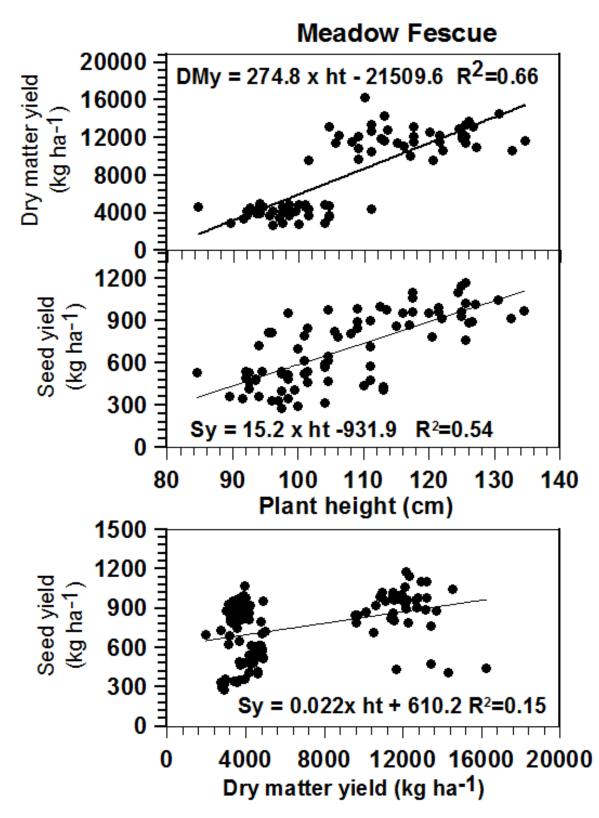


Figure 7. Seed yield of meadow fescue cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB.

Table 6. Plant height and aerial dry matter yield at maturity of meadow fescue cultivars in 2014, 2015 and 2016 fro.	т
the trial established in 2013 at Beaverlodge, AB.	

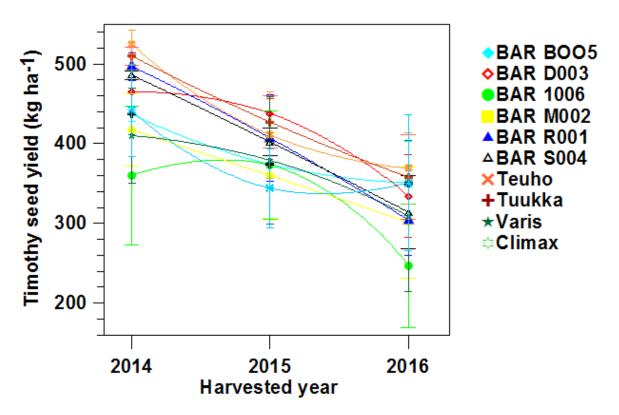
Company	Cultiver	Pla	nt height (d	cm)	Dry matter yield (kg ha-1)				
	Cultivar	2014	2015	2016	2014	2015	2016	Total	
	FP75RO		94	116	3811	4437	12064	20312	
	COSMONAUT		98	117	3510	4271	12362	20144	
	BOR 20613		97	117	3785	4258	11399	19442	
	BOR 20614		92	119	3814	4264	12097	20175	
Barenbrug USA	11-FPF12		99	116	3239	4122	11922	19283	
	11-(09-FPF7)		103	116	3745	3740	11446	18932	
	PRADEL		99	117	3329	4011	12777	20117	
	FP75RO1		99	116	3248	3875	12591	19715	
	BARCRYPTO		98	117	3611	4345	12291	20247	
Check	Preval		99	124	3466	3978	11386	18830	
CV%			4	7	10	6	9	5	
LSD 0.05			4	18	702	530	2201	762	

Seeding date was 15 May 2013 and harvesting dates were 17 July 2014, 13 July 2015 and 26 July 2016

Figure 8. Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) in 2014, 2015 and 2016 of the meadow fescues established in 2013 at Beaverlodge, AB.

Timothy

The timothy trial established in 2013 comprised 10 cultivars of which 6 cultivars were from Barenbrug, 3 from Moore Seed Processors and a check cultivar Climax (Table 7). In the contrasting seasonal rainfall amount and distribution pattern from 2014 to 2016, two cultivars Teuho and Tuukka from More Seed Processors out-yielded the check cultivar Climax, with cumulative yield advantage of 15% and 14% respectively over the Climax. All test cultivars yielded higher than Climax in 2015 while displaying inconsistent yields in 2014 (atypically dry year) and 2016 (atypically wet summer) (Table 7). Although most of the cultivars showed interactions with the weather patterns in their relative seed yields, the higher yielding cultivars showed declining trends in seed yield over the successive seasons (Figure 9). However, there was in increasing trend in plant heights in the successive harvest seasons and significant increase in biomass yield in the 2nd and 3rd harvest season from the level of 1st harvest season (Table 8). While there was strong correlation between plant height and dry matter yield of Timothy, seed yield did not show any correlations with plant heights and dry matter yield (Figure 10).


Compony	Cultivar	Seed yield (kg ha-1)			Seed yield (lb ac-1)				% of Climax				
Company Cu	Guilivai	2014	2015	2016	Total	2014	2015	2016	Total	2014	2015	2016	Total
	BAR BOO5	437	374	351	1161	390	334	313	1036	99	109	100	102
	BAR D003	465	438	334	1237	415	391	298	1104	105	127	95	109
Barenbrug	BAR 1006	360	373	247	980	321	333	220	874	81	109	70	86
USA	BAR M002	417	360	301	1078	372	321	269	962	94	105	86	95
	BAR R001	497	408	304	1209	443	363	271	1079	113	118	87	106
	BAR S004	486	402	314	1202	434	359	280	1072	110	117	89	106
Moore	Teuho	525	411	369	1304	468	367	329	1163	119	120	105	115
Seed	Tuukka	510	428	358	1296	455	381	319	1156	115	124	102	114
Processors	Varis	410	379	309	1097	366	338	276	979	93	110	88	96
Check	Climax	442	344	351	1137	394	307	313	1014	100	100	100	100
CV%		13	18	13	11								
LSD 0.05		123	145	86	317								

Seeding date was 15 May 2013 and harvesting dates were 12 August 2014, 30 July 2015 and 10 August 2016.

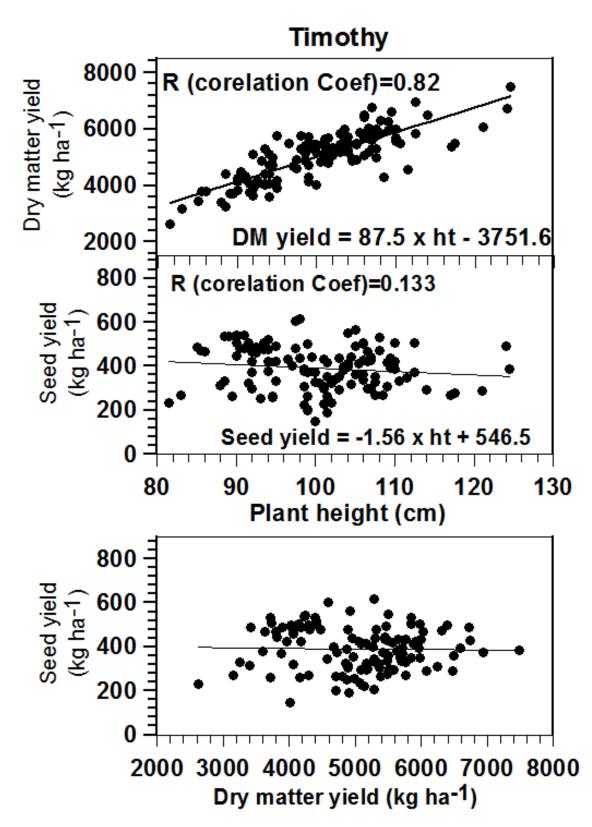

Company	Cultivar	Plar	nt height (c	Dry matter yield (kg ha-1)				
Company	Guilivai	2014	2015	2016	2014	2015	2016	Total
	BAR BOO5	93	102	108	4009	5644	5256	14908
	BAR D003	96	110	112	4937	6048	5806	16791
Barenbrug USA	BAR 1006	89	99	101	3784	5079	5402	14264
Barenbrug USA	BAR M002	91	97	103	3830	5092	5361	14282
	BAR R001	91	106	104	3883	5347	5278	14508
	BAR S004	95	98	103	4219	5418	5598	15235
	Teuho	93	106	107	4249	5397	5385	15031
Moore Seed Processors	Tuukka	94	104	106	4276	5845	5606	15727
1100033013	Varis	89	106	106	3879	5179	5220	14277
Check	Climax	95	110	107	4569	5846	5949	16364
CV%		4	5	4	10	7	7	7
LSD 0.05		8	9	9	823	833	771	2074

Table 8. Plant height and aerial dry matter yield at maturity of Timothy cultivars in 2014, 2015 and 2016 in the trial established in 2013 at Beaverlodge, AB.

Seeding date was 15 May 2013 and harvesting dates were 12 August 2014, 30 July 2015 and 10 August 2016.

Figure 9. Seed yield of Timothy cultivars in 2014, 2015 and 2016 from the trial established in 2013 at Beaverlodge, AB.

Figure 10. Correlations between plant height (ht), dry matter (DMy) and seed yield (Sy) of Timothy in 2015 and 2016 from the cultivar trial established in 2013 at Beaverlodge, AB.

Results of on-going trials

Creeping red fescue

In the creeping red fescue trial established in 2015 (Figure 11), only one cultivar MSPO314 from Moore Seed Processors exceeded check cultivar Boreal in seed yield in the first harvest season in 2016. Other three cultivars MSPO114, MSPO214 and MSR0612 from the same Company produced comparable yield to Boreal. Rest of the 21 cultivars are unlikely to compete Boreal, based on 2016 yield performance (Table 9).

Company	Culturer	Plant	Dry matter yield	Seed yield				
Company	Cultivar	height (cm)	(kg ha⁻¹)	kg ha⁻¹	lb ac-1	% of check		
	4BEN	59	2914	420	375	47		
	4DR4	54	2604	382	341	43		
	4ED4	55	2532	523	467	59		
PureSeed	4GRY	60	2521	326	291	37		
	4PUE14	55	3258	457	408	51		
	4SHR	58	1968	255	228	29		
	4SP14	55	2018	273	244	31		
	Reverent	77	3503	768	685	86		
Imperial Seed	DSV1501	74	3252	776	692	87		
	DSV1502	74	2728	640	571	72		
	DSV1503	73	2690	609	543	68		
	MSG0412	69	3139	680	607	76		
	MSPO114	73	3350	886	790	99		
	MSPO214	76	3419	852	760	95		
Moore Seed	MSPO314	74	3188	1083	966	121		
Processors	MSPO414	66	2817	586	523	66		
	MSPO514	68	2138	119	106	13		
	MSPO614	54	2323	628	560	70		
	MSR0612	63	3233	864	771	97		
Barenbrug USA	BARVVVP3CT	59	2314	221	197	25		
Darenbrug USA	Bridgeport	71	2796	294	262	33		
Foster's Seed	4CRD8	57	2535	416	371	47		
	ASC295	75	3071	505	451	57		
Check	Boreal	70	3169	893	797	100		
CV%		5	14	18				
LSD 0.05		7	642	204				

Table 9. Seed yield of creeping red fescue cultivars in 2016 from the trial established in 2015 at Beaverlodge, AB.

Seeding date was 13 May 2015 and harvesting date was 27 July 2016.

Figure 11. Photograph taken in 2016 of the creeping red fescue trial established in 2015 at Beaverlodge, AB.

Timothy

In the timothy trial that established in 2014 (Figure 12), all new cultivars from from Barenbrug except to Barpenta produced significantly higher total seed yield than Climax as a check cultivar over the two harvested years of 2015, 2016 (Table 10). However, Climax had the tallest plants with highest dry biomass yield of all cultivars (Table 11).

Company	Cultivar	Seed yield (kg ha-1)			Seed yield (lb ac-1)			% of Climax		
	Cultival	2015	2016	Total	2015	2016	Total	2015	2016	Total
	Barfleo	1145	1251	2396	1022	1116	2138	123	115	119
	Barpenta	824	444	1268	735	396	1131	88	41	63
	Bor01025	1287	1242	2529	1148	1108	2256	138	115	125
Barenbrug USA	Bor01033	1235	1113	2348	1102	993	2095	132	103	116
Balenblug USA	Bor01037	1147	1117	2264	1023	997	2020	123	103	112
	Bor2005	1223	1129	2352	1091	1007	2098	131	104	117
	Bor88060	1229	1249	2478	1096	1114	2211	132	115	123
	PHLR99	1231	1263	2494	1098	1127	2225	132	117	124
Moore Seed Processors	MST0513	903	1039	1942	806	927	1733	97	96	96
Check	Climax	933	1084	2017	832	967	1800	100	100	100
CV%		10	8	14						
LSD 0.05		230	186	641			10.1			

Table 10. Seed yield of Timothy cultivars in 2015 and 2016 from the trial established in 2014 at Beaverlodge, AB.

Seeding date was 16 May 2014 and harvesting dates were 10 August 2015 and 12 August 2016.

Company	Cultivar	Plant he	ight (cm)	Dry matter yield (kg ha 1)			
Company	Cultival	2015	2016	2015	2016	Total	
	Barfleo	117	124	10011	14126	24137	
	Barpenta	109	112	7296	14001	21297	
	Bor01025	111	117	9211	15554	24764	
Barenbrug USA	Bor01033	114	119	8675	14289	22964	
Barenbrug USA	Bor01037	112	114	8039	14190	22229	
	Bor2005	114	115	8737	14212	22949	
	Bor88060	120	123	9605	15599	25204	
	PHLR99	110	116	10156	14689	24845	
Moore Seed Processors	MST0513	108	113	8685	12234	20918	
Check	Climax	126	127	11733	16546	28278	
CV%		5	6	8	7	6	
LSD 0.05		12	14	1502	2093	3123	

Table 11. Plant height and aerial dry matter yield at maturity of timothy cultivars in 2015 from the trial established in 2014 at Beaverlodge, AB.

Seeding date was 16 May 2014 and harvesting dates were 10 August 2015 and 12 August 2016.

Figure 12. Photograph taken in 2016 of the Timothy trial established in 2014 at Beaverlodge, AB.